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. ON THE AUTO AND CROSSCORRELATION
OF PN SEQUENCES

James C. Morakis - .

ABSTRACT

Nt

The autocorrelation and crosscorrelationproper-

ties of pseudorandom (PN} sequences are analyzed by

- using seme important properties of PN sequences.
These properties make this discussionunderstandable
without the need of linear algebraic approach. The
analysis is followed by some experimental.results,
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ON THE AUTO AND CROSSCORRELATION
OF PN SEQUENCES - - - P

Due to increasing interest in PN codes for applications in multiple user and
" or combat of multipath and others the author has decided to compile some of the
already known and other recent developments on the correlation properties of
PN coding schemes and their intercomparison. The basic linear PN codé gen-
eration is discussed extensively in{1] and some of the important properties of
PN codes will be repeated for convenience. .

: A maximal linear PN Sequence is defined as a sequence generated by a
linear* feedback shift register m stages long such that the length of the sequence
is the maximum possible for a constant m. X can be easily shown that if such
a maximal 5equence exists its-length must be e DU T

i Figure 1 demonstrates such a feedback shift register with h, either 0 or 1

~h, =1 means tl/at there is a connection and h, = 0 means that there is no con-
nection (h; h =1 always). One can consuier the contenis of the shifi register

- as the §Lg_t_e of the shift register. If the state is known at time t, then the next

. state is given by a relationship of the original state and the trans1t1on matrix

COAKE, L & , ‘ e :

" The characteristic equation of the matrix A turns out to be [1] -

B NOES h,x withh, -o landh =h_ =1.

e =0 o : . : Ve
i , . Cat AN My
. - . . o .

* The only allowable logic i;mo\d 2 which i3 on exculusive—or guie..
** See Apendix A forihe exact form of A in terms of the h| connactions.”
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Figure 1=A Linear Feedback Shift Register

This polynomial is also called the generating polynomial of the sequence. If
this polynomial is primitive then the sequence is maximal. “This polynomial,
just like any other polynomial of degree m, has m roots which might be desig-

nated a8 aya_ s e s s+ 00 &, The knowledge of any one of the above m

roots is sufficient because all the others can be represented as powers of the
one chosen. Thus we can say that P, (x) hasaroota. Ifa polynomial has a
root B such that S = o, k any integer, then that polynomial is either poiynomial

./ P, (x) or another primitive polynomial. - The number of distinct maximal se-

quences that can be generated by an m-~stage shift register is given by (1]

P
R

$(27-1)
m

where ¢ (j) is the Euler phi function and it is equal to the number of integers
prime to j but less than j. So if j is a prime ¢ (j) = i -~ 1. Table 1 gives the num~
ber of maximal sequences the length L and other information for each m. Table
1 also gives a listing of the first few Mersenne primes which are defined as the
m's which are prime such that 2™ - 1 is also a prime. Obviously Mersenne
primes result in large numbers of maximal sequences. To investigate the cor-
relation properties of shift register generated sequences we must first discuss
some pertinent properties. A sequence of period L can be viewed &s a sequence
of L states (or L n-dimensional vectors; L = 2" -1 for binary).

Property A. A maximal binary sequence will occupy all 2* ~ 1 non-~zero states
before it starts repeating.

Progeg_tx B. (Balance property) The number of 1“3 m a ma:dma.l sequence ex-

- ceeds the number of 0's by 1.

Thus the number of zeros of a maxuna.l sequence is equal to 2" 1_ 1 and the

number of i's is equal tc7< /



Table 1

. Prime @ -1)

m L=2 ~1 factors (2” - 1)» o

of 2% - 1 ‘-

2 3 3 2 1
3 7 7 6 2
4 15 ( 3°5 8 |- 2
5 31 .3 30 6
6 63 8 36 - .
T EEtIN Vo $127 126 18
8 255 | '.\-.\' 35017 128 16
9 511 | 773 . 482 48
10 1023 . 31131 T 600 - 60
11 2047 23 - 89 1936 176
12 4095 3:5:7-18 | ,- 1728 144
13 8191 8191 8190 630
14 16383 3.43-127 10584 756
15 32767 © 7e3ie151 |7 27000 1800
16 65535 5438 +17 ¢+ 257 32768 2048
17 131071 _ 131071 131070 7710
18 262143 3% +47419.73 139968 7776
19 524287 | 524287 524286 27594
20 1048575 3:5%+11-31-41 480000 24000

Mersenne Primes:

2,3, 95,17, 13, 17, 19, 31, 61, 89, 107, 127, 621, 607, 1279, 2203, 2281, 32117,

4253, 4423, 9689, 9941, 11213, 0 e s 000




Propertz C. {The Smft-and-add property )
When a maximal sequence is first shifted by t b1ts and then added to ltself
the resultmg sequence is the same sequence delayed by some time t1 f.es /

l. LR ':'.vfl|

e g e e e . Ce e e

Sy (t) +5, (t -k)y =s, (t -étl) fork + 0.
i

Property D. This is really a transfonnatlon process that apphcs to all binary
waveforms, It facilitates the calculation of correlation by transforming multi~ ;
plication into mod 2 addition. As a result of this transformation 1's in a binary
.8equence are transformed into 9's, the ~1'8 are transformed mto 1's and the

AR

correlation is given by L “

RS P . : i v h : v r

P

A ' ol . #of0'sinS.-#of I'’sin$ (e i :
R, . = < L S )
SASB L \ A . T :

where S, is the sequence formed by adding S, to 8; mod 2, bit by' bit,

The above four concepts will enable us to arrive at some of the most im~
portant conclusions on the values of auto and crosscorrelation of linear PN
sequences without becoming dazed by the complex maze of modern math which

.would normally be necessary for this purpose. ‘ o :

Auto-Correlation of 2 Linear Maximal PN Sequence -

" The goal is to evaluate T L AT I
- | & Joi i)
i RSA (k) = E A () S.\(t - k) R : v
izl _ i
\“ e ’



/ /..-
Application of the txjansformation D results in

#0's in S, ~ #-1's in 5, L

Rg, (k) =R sa'(k) =

L
whére
S; =8, _(t? e 5, (t ~k)
for k # 0. CY
Application of property C results in . L . i

!

!I

\

1 .o
N

S. =S, (t) S, (t-k) =5, (t = ¢t,)
o
Thus S, is the sequences S shiﬂ;ed by some dela.y tl, by property A L= 2" -1
and by property B : . :

P

#0's - #1'sinS,()=-1 . .
: U : .\\
and R (k)==1/@ -1 fork #0; fork=0
‘ , el
S¢ = 8,(t) ® 5,(t) =25,(t) =0 mod 2
: ¢
thus S, is the all zexro sequence (# of 0's = L and # 1's = 0) and
N ===
( ) L-
N, ' :
as expected, - - -
/”— e




Cross Correlation of Linear Maximal PN Sequences =~ - -~ RTINS |

The cross correlation of two distinct linear maximal PN gequences 8, and
Sa is given by equatmn (1) with ~ .

- . 2

. '3’(7‘

Se=85,(t) e Sy (t ~-k) anyk

Unfortunately the shift and add property cannot be used here. Thus we cannot
predict at this point the values taken by R, (k} as a function of k. The literature
is not helpful either in this respect; however some bounds* have been given.
These bounds are very loose (i.e., the observed autocorrelation values are much
less than the bound) except for a specific one derived by Gold [2] and applicable
to only certain pairs of sequences. The resulis of this reference will now be
stated and explained.

- LetF (%) and P (x) be two primitive polynomials of degree m: with roots
a and 8 respectwekv and let T (an 1nteger number) be _—

5 . ) [ Sorae g at e
: : g KRS RV SRR E P

+1 ' e ’
) 2 % for m odd R
and VA S
m 4 2
2 +1 for ‘m even L
m £ mod 4 R
if ~ . ,/‘
ﬁT
then

Rpp(k) €T/ (2 - 1)

This is the only tight erosscorrelation bound that is available at the present and,
at the risk of being repetitious, it should be emphasiZed that this bound applies

*These are upperbounds an RSASB (k) and imply that 1hgs R is less thon & certain valve (the.
bound). , .



only to a few chosen pairs of PN sequences. As an example consider m = 5, the
number of maximal sequences is (from table 1) 6, the length is 31, and T = 9.
I sequence S is chosen with generating polynomial E (x) of roots, then choose
sequernce S correSpondlng to polynomial E x) whose root is a =% ; the cor~
relation R,, {k) for any k will be equal to or less than 9731 = .29, Notice that
the roots of P (x)*areac,a?, g4, o8, al6, the roots of P, (x) are 8 =o?, B2~
al8 B4 = g%, B =all, B 16= 520 (five roots for each polynomml of degree 5)
There are four more maxlmal sequences from the four polynomials '

Po(X)s Py(X): Py(x)s Py(%)

the roots of B, (x) are y = od, of, al?, o2, al?, . _
. ' TN . ;. PN . LT
the roots of B, (x) are & = a’, al!4, a8, o235, alf e

the roots of B, (x) are " ¢ = al'l, a??, al3, a26, 2! .- - we TR P
the roots of B, (x) are w =al%, a3, a9, o27, 23 o 7 -
Also notice that 7' = (aH)T = a7
thus R. (x) and B. (x) are also a pair of polynomials whose sequences exhibit
the Gold bound, In a similar fashion we can find the remaining pairs which are
F, and B, B, and B , B and R andfinallyP andli '
Thus for any k

T

Ry (k)
R
R

Reg(k) <.9/31 S

Rm(_k_)—f's._gf'sn

A

9/at - i

9/31

A

A

9731 ‘ ‘ B ‘."_,’ ‘

*See Appendix B, ‘_ PN



There are two unsolved problems here. The first problem is: What is the

maximum crosscorrelation of the remaining 9 pairs such as the pairs (A,C), .
(A,E), {(A,F), (B,C), (B,E), (B,]), (C,D), (D,E), (P,F). The second problem is.
what is the distribution of R k) ?

f— »

Presently the answers to the above problem, are obtained by brute exhaustive
simulation. Some shortcuts can be taken by using some of the theory, but the _
shortcuts simply mean less computer time. An exhaustive simulation was per- -
formed by the author with m = 7 and 11; the results for m = 7 are outlined in
the next section.*

Experimental Results on the Crosscorrelation of Linear Maximal PN Sequences
ofm =1 p

The eighteen PN sequences with m = 7 and L = 127 have been generated '
and the crosscorrelation of each pair was found exhausively for all k (0 to 126).
The results showed that for a certain group of pairs the crosscorrelation takes
on a certain number of values with the same frequency. For example, for a
- certain group* which I shall call Group A the crosscorrelation took on the values
-17 for 28 k's, 15 for 36 k's and -1 for 63 k's. The different groups and the
crosscorrelation values have been tabulated in Table 3. It can be seen from
Table 3 that there are three sets of crosscorrelation values. For certain pairs
of sequences the crosscorrelation takes on the values -17, -1, 15 with the fre-
quencies shown under Group A, for other pairs it takes on the values -41, -17,
-9, -1, 7, 15, 23 with the frequencies shown under Group B and for pairs con-
sisting of any sequence and its reverse the crosscorrelation taken on the values
_indicated by Group C. ' '

Table 4 shows how 16 of the 18 sequences divide into Groups A and B when
each of the eighteen sequences is the sequence being crosscorrelated (its reverse
belongs to Group C). An explanation of this division into the two groups is given
in Appendix C.

It can be shown§ that the grouping of the sequences as observed in Table 4
is strictly a function of the roots of the sequence generator polynomials’ o

1 See Table 2 for identification of each sequence and its roots

t This group is the one that includes the o'7 polynomial.

* The results for m =9, 10, |'| and 12 will be published soon.

§ See Appendix C :

¢ The roots of the polynomials generuhng the sequence ara referred to here
as the roots of the sequence for the sake of brevity.

~



Table 2

The 18 Maximal sequences with m = 7 and the corresponding roots

Sequence number
and corresponding
root of generating

—_ P

-,

The complete set of roots
satisfying the sequence
{only exponents of o are shown)

polynomial

l-a
2 - ab3

"3 - al
4 - (a3)63 = a3l
5-af
6 - (a5)83 = af!
7~a

90

10 -

(all)ﬁ.'i = 58
13 - a13 .

\
14 - (0’.13)63 = o7
M. 15- ate
16 - (a19)63 - a_54
17 = o2

18 - (a21>63 - a53

8 - (a7)63 - q‘S

15, 30, 60, 120, 113, 99, 71
9,18, 36, 72, 17, 34, 68

1, 2,'4, 8, 16, 22, 64 -
63, 126 125, 123, 119, 111, 95
3, 6, 12, 24, 48, 96, 65

31, 62, 124, 121, 115, 103, 79

5, 10, 20, 40, 80, 33, 66

47, 94, 61, 122, 117, 107, 87

7, 14; 28, 56, 112, 97, 67

55, 110, 92, 59, 118, 109, 91
11, 22, 44, 88, 49, 98, 69
39, 78, 29, 58, 116, 105, 83
13, 26,°52, 104, 81, 35, 70
23, 46, 92, 57, 114, 101, 75
19, 38, 76, 25, 50, 100, 73
27, 54, 108, 89, 51, 102, 77
21, 42, 84, 41, 82, 37, 74
43, 86, 45, 90, 53, 106, 85

11, etc.

~ Sequences numbered with cdd numbers are taken frora (3]; sequences
whose number is even and next to an odd number are the correspond-
ing reverse sequences, i.e., 2 is the reverse of 1, 12 is the reverse of




Table 3

Tabulation of Cmsscnrrt%'rfion values (R x 127) and Corresponding Frequencies

10

/ Frequ;ancy or # of t's
127R_ (k) / — =
‘ Group A GroupB . - |- Group C
=37 ] o . 0 0
-33 0o | 0 0o "
~29 | o 0 0
-25 ) | '0".‘ ; 0 0
21 ¢ 0 “‘-'.A " 0 7
~17 -{ 28 14 7
a3 0 0 8
-9 . 0 28 -21
-5 - 0 0 7
-1 63 35. _ 14
3 0 0 3 21
7 o.- ! .;2'3 ,_ 7
1 . o . o 0. 114
15 oD * 36 14 14
19 S 0 N
23 | 0 7 0
Total 1—2-7- .'ET?- 1_}2_7-
\




|

£
Specifically if the root of a sequenc 4;1: n then the sequences with 7 * belong to
group A, the sequences with roots 7 belong to Group B and the sequences with
‘roots -n’ﬁc belong to Group C. o . ‘

For = =7 (L=127)

A -3, s, 15, 9, 11, 39, 13, 23, 27, 43 .

I
¢

4, =31,47,7,55 19, 21 o

and ’ .‘y

Note that for this case 9~/ 17 mod 127 represents the Gold sequence, and 63
‘represents the reverse sequence. , : -

It should be observed that the crosscorrelation is always an odd number. .
The reason is the fact that L (= 127) is odd, and the # of zeros plus the number
of 1's must equal L while .

LR, =8, =#of O's - # I's 5 2(# 0's) -L "odd QED

e
-

/
Another observation is fhat the crosscorrelation in group C takes on values
equal to 3 mod 4. T i indicates that the number of zero's in the resulting se-
quence, S. =8, e is always odd. (The crosscorrelation in group A is 3
mod 16 and for group B it is 3 mod 8.)* :

. The Correlation as a Random Variable

In view of the results of Table 3 the crosscorrelation of the three groups
will be treated as a random variable. The reason for doing this is the following.
Although Group A has the smallest maximum crosscorrelation Groups B and C
seem to be more toward the center, First let us find the mean and variance of
the autocorrelation if the autocorrelation 18 regerded a2s a random variable.

*See Reference [4] .

11



" Correlation Groups for the 18 Sequences 6f m =7 -:‘; e

Table 4

Part 1.
Part 2,

Part 3.

Part 4.

Part 5.
Part 6.

Part 7.

Group B=11, 14, 18, 1, 3, 5

Part 8,

- Part 9.

i EEL VA B

Sp e e,
L RS R R
s

N R

R T .
’.‘J'

Part 10,

Part 11.

“.-‘iGroupA—M 15, 18,1, 2,3,4 By 8 10
: -GroupB 13, 16, 17, 6, l,9 e

" Part 12,

:Group B =12, 13, 16, 18, 1, 3

AT R I
i) Ton

If S, is sequence #1 (reverse sequence is #2) ° ©
Group A = Sequence #'s 3, 5, 8, 9; 11, 12, 13, 14, 16, 18
Group B = Sequence #'s 4, 6, 7, 10, 15, 17 h

y 13
If 5, is sequence #2 (reverse sequence ig #1}

Group A = Sequence #'s 4, 6, 7, 10, 11, 12, 13, 14, 15, 17
Group B = Sequence #'s 3, 5, 8, 9, 16, 18

If 5 is sequence #3 (reverse sequence is #4)
GroupA 5, 6, 8, 9, 11, 12, 13, 15, 181
Group B =17, 10, 13, 15, 17, 2 : e

If S_ is sequence #4 (reverse sequeﬁce is #3) |
GroupA 5, 6, 7, 1€, 11, 12, 14, 15, 17, 2 :
Group B =8, 9, 13, 16, 18 1

If 8 is sequence #5 (reverse sequence is #6)
GroupA 8, 9, 10, 11, 14, 15, 18134 :
Group B=17, 12, 13, 16, 17, 2 R

If S, is sequence #6 (reverse sequence 15 #5) R
GroupA—791o 12, 13, 16, 17, 2, 3,-4 A
Greoup B =8, 11, 14, 15, 18, 1, '

if S is sequence #7 (reverse sequence is #8)
GroupA 9, 8, 10, 12, 13, 15, 16, 17, 2, 4, 6

oy

If S is sequence #8 (reverse sequence is #7)
Group A =9, 10, 11, 14, 15, 16, 18, 1,3, 5, 7
Group B =12, 13, 17, 2, 4, 6 :

If S_ is sequence #9 (reverse sequence is'#10) -+

 Group A = 12, 13, 16, 18, 1, 3, 5, 6, B8

Group B =11, 14, 15, 17, 2, 4 EEE L 'Ci:.": Sefve et L

)

If S, is sequence #10 (reverse sequence 15 #9) o
Group A = 11, 14, 15, 17, 2, 4,5, 6,7, 8" and g

T yrare gl

1f S. is sequence #11 (reverse sequenee 1s #12) SRR Y

Y i b

s, is sequence #12 (reverse sequenee is #11) o
Group A =13, 16, 17, 1, 2, 3, 4, 6, 7, 9 . R
Group B = 14, 15, 18, 5, §, 10 oo RS MamEen

12




.~ Table 4 (continued)

—

/P&rr‘f{flf $ is sequence #13 (reverse sequence ig #14)
Group A =16, 17, 18, 1, 2, 3, 6, 7, 9, 12
~Group B =15, 4, 5, 8, 10, 11 R P
Part 14. If S_ is Sequence #14 (reverse sequence is #13)
Group A = 15, 17, 18, 1, 2, 4, 5, 8, 10, 11
~ Group B = 16, 3, 6, 7, 9, 12

Part 15. If S_ is sequence #15 (reverse sequence is #16)
Group A. =17, 18, 2, 4, 5, 7, 8, 10, 11, 14 ] -
Group B.=1, 3, 6, 9, 12, 13

Part 16. If S is sequence #16 (reverse sequence is‘#15)
GroupA.-17 18, 1, 3,6, 7, 8, 9, 12, 13
Group B. = 2, 4, 5, 10, 11 i4

Part 17. If 5§, is sequence #17 (reverse sequence is #18)
Group A =2, 4, 6, 7, 10, 12, 13, 14, 15, 16
Group B =1, 3, 5, 8, 9 11

Part 18. If S is sequence #18 (reverse sequence is #17)
GI‘Ol.lp A=1,3,5, 8,9 11, 13, 14, 15, 16
Group B=2, 4, 6, 7, 10, 12 ‘

*Group Chos only the reverse sqeuence. The reverse puurs are (I 2), (3, 4), (5, 6), (7, 8},
(9, 10), (11, 12), (13, 14), (15, 16) und(l? 18). K

Since its two values are 1 for 7 = 0 and ~1 for the 2™ - 2 cases where 7 £ 0

-
.

8 [Z: 8, f‘(eiﬂ /-1

i

AR

= [(2" -1)1 ¢ (~-1) (2" - 2))/(2" - 1) = 1/(2" -

R - E/I(Em ~1y=1/¢2™7 i'>2

I(H ) is the frequency of the { t" vaJue of the random variable. The variance of
& becomes: \ Lo - . ,



——" . )
T L

| 'Ug =I:ZQ? f(eii}'/(zm.'_' 0 g"’,.‘ i I.  '<  o

¥ o
' L S et
== [— ’
gt fL

=2 - 124 (- D2 (2"-2)-F2_ (2" - 1)? 42" - 2-1/(2" ='1)

YL

7 _qam c2m 3 1/(27 TR I
ol :og /(2™ - 1)? ;-(2 - 12 +(§m - f); 1/(2 - 1?,"'-..;_! ’

for the case m = 7, 2" -1 = 127 and L
i ' ' Y
T #=1/127 RULRS
_ o L Columsl S
and . o | R — TR
' 2 o . TR RS I
oy = lﬁm +126 - 1/127 11.313388 ., -
127 PRV
and o
Og 9 ! __-J* HY :
Op = i_2_'; = .0891 o =.00793 . ..
. . . i\ T - [ i
-~ i

-
Similarly a simple calculation reveals that
. / -
/

oM = 17127, |6 ] = 1079/127, = 8.496062, o§® = 11.3133

\5_05_= 1/127, [6®] =1133/127 28.92, '0§P=11.3133 or o, = 12355

1 XN S

8 =1/127, 6| = 1217/127 = 9.5826, o{®) = 11.3133

where the superscripts A, B, C, refer to the groups A, B, C respectively. :

14



i
The interesting result is that the mean and variance of the autocorrelation or |
crosscorrelation for groups A, B, and C are independent of the group, The mean
of the absolute value is approximately :

L s

|R| ~ .07 less than 10%
This value is not bad when’one is not”éoncerned about peak crosscorrelation,
“Since R is the same foy Groups A, B, or C and since o, i8 the same also for
Groups A, B, C, comparison of A, B, and C can only be done on basis of |R]
peak and |R. On both/these criteria group A becomes superior to the other

groups. We call Group A a group with good crosscorrelation properties,

A

Sets of SequenceS with Good Crosscorrelation Properties.

From Table 4 one could choose a set of 3 sequences with good cross-
- correlation properties, i.e., all R ;, R |, R 35 belong to a set where the pair-
- wise crosscorrelations are three valued as shown in Table 3 under Group A.

For four signale one could similarly choose 1, 3, 5, 8 with R |, R, R 15 B35
R, and R, all belonging to a set having the same crosscorrelation distribution.

For 5 signals one could choose 1, 3, 5, 8, 9. For 6 signalé 1, 3, 5, 8, 9, 11
breaks down because (9, 11) belongs to Group B, but 1, 3, 5, 8, 9, 18 works.

For 7 signals one must consider many combinations but in general one can
be sure that no set can be found of more than 9 signals such that for all i, j.

4, j=1,2,...,tenormore 9“. belong to Group A,

On the generation of a large set (2™ + 1) of non-maximal PN sequences with
good crosscorrelation properties., The crosscorrelation properties of the
previously described sequences are not at all discouraging even for Groups B
and C because the only difference is in the peak values which come with a very
small probability, i.e., for Group B ¢ = -41 occurs only once out of 127 possible

times, Needless to say that the autocorrelation of each of the sequences is al-
maost perfect (orthogonal), as shown earlier.

The only difficulty arises when one needs more than ¢ (L)/m sequences. One
Solution to this problem is to generate sequences S, from two maximal sequences
S, and 8 of the same m as illustrated in Figure 2.

o~

v Op = O /127,

R

= 8
*R=_
127

15



Shift Register A

Shift Registar B

Figure 2 _ ..
. This configuration will generate* 2= + 1 non-maximal sequences of length
L = 2™ - 1 whose autocorrelation and crosscorrelation for any two sequences will
have the identical values (with identical frequencies) as the crosscorrelation of
S, and S, . In other words by choosing §, and 8 so that R, belongs to Group
A, then 8, and 8, as generated by Figure 2 will be such that R, will also be-~
“long to Group A for alli =1, 2, 4440 2" +1 and § =1, 2, « o a0 .27 +1,

The Correlation of PN Sequences Without Limitation on the Length. -

It was proven in Part 3 that if the correlation is a random variatle for the
case of a linear maximal PN sequence, the autocorrelation, had a mean equal

to (1/1)? and a variance . Socanomo
o . . N S R LT L S
e el @m e e am a2 1em oy T
' . R 2" - 1)3-. !
'vwhich,.for- large mAczlm bé proximat {to . : |
e N A E
vy ‘.,‘}/b‘,z S :_1.
iR TR PR
SRR s Sl
where L is the/length of the sequence. - L

* See Appendix D i : _
** One exception is the autocorrelation of 2 of these sequences §, =5, 0 =5, ond

5, =55 +0 =55 whichis =1/2™ ~ 1} for 70 and 1 for 7=0.

16



It has also been observed that the crosscorrelation of any two maximal PN
sequences of the same degree (or length) has the same variance and mean as

akove,

The question that arises is: "What is the mean and variance of the auto-
- correlation or crosscorrelation when the sequence is not cresscorrelated for its -

- entire length ?"

a. Letting the segments be p bits along with p < m, the correlatmn of two p
bit segments of a sequence § is : <

.I

.
6 (ry=’ Z:‘ $,(0) 8; (")
. 5"“ L : ..

by applying properties D and C

B (r) = [#of O's _‘# of 1's} in S
where - o ,. | _ X L
Sc=S (M eSM=5 (1) | —
N N '
letting w denote the ;reight* of the p-tuplet then’

-

() =p - 2w

Since w i8 not known for each r, it is treated as a random variable; once the
probability densxty ** function of w ig found one can find & and 62 For ezch w,
there are Cy p-tuplets since there are C? ways of having w "ones" in p distinct
(ordered) positions. :

\ ]
' I

* The weight is equal to the number of 1's ‘ -
** Since w is di screte, instead of the probability density we find the frequency of occurrence £,



Obviously the frequency of a given distinct p-tuplet* in a maximal sequence
of 0's and 1's is 2 "“P*+, "Therefore the frequency of a given w or correspondingly
a_ is . T - Co

w

T - Aan~p Mp A RE R
‘Ew - o« Cw

" Then the expression‘ for & becomes:

\ P P . 2” .
L Eeb ) et ) aneE )0 1Y)
6:__ g f = o 1——- f
s LZ'B‘fi L "L o\ T
. . - \’\ . - ; - ‘ —-“
p . ’ P
:E. f —2 Wf' - .
L -® L o - \. :’
- * ; Y
2 % )
RIS
m+1-p o {0 o
’ .:p-..2 T ? w CI: . _ o
] . Lo C : 4
From Appendix E . ., -t
£ \.. e -
cr =B gr -
Z RS
and
6 = ..2m+lhppzp=£[2'ﬂ_1_.2m]=_.‘3 ‘
P="L 3 L |
consequently . -
R=2..1
P L

*For a Shift Register generoted sequence the all zero p-tuplet has o frequency of 2™ P—1 be-
couse the all zerom-tuplet is the only m-tuplet which is absent from the moximel sequence.
However, in this discussion this fact will be neglecied for the soke of simplicity with no ="~
considerable error, ' o ‘

* This is the amouni of times that a distinct p-tuplet appears in an m-dimensional space over
GF . ¥ '
2 ~,

i8



The standard deviation of 8, o2 , 18 be definition:

the first term becomes

‘ [ . P s
2n-e 2w am=p 4w 4w?
s - bl I o S E: cP . 20CP 4 —CP
L Zp( P) TP L ['°'+P’€!

N A 3
nOw ‘ ‘\ \'- . ¥
P - . op \ ' : 7 '
E : - Z : - 1w _ - ‘
sz (SLAN S :_ 1 _(11;)9-2" .
" . w . : Lol S . "
) N 1 N -

from Appendix E _'

o I o u_ '
z : _P P e
| . W C; = ..2- 2 L _.'.f.f -
from Appendix F o . : N R
é N ) e y\\ - ) '

e _
w? ce =%2P +p(p- 1) 27-2

N

The first term becomes __ - e

m-yp L ’ .
%P[29L2'2"+g- 29 (1/2+ 41)]=2m/1,

19



then ' g e d ot . " Vb ey

for large L

If p is greater than m (with still linearvsequences) these relations, although
no longer true, may be considered as upper bounds for the following reasons.

If p- m =h, given the first m bits the remaining b bits of the p-tuplet are
determined depending on the feedback connections of the shift register; further-
more there are only 2 p-tuplets (not 2° } which obvicusly makes some* p-
tuplets inadmissible. The majority of the above inadmissible p-tuplets are the
type whose weights is much different from the mean weight# ; (i.e. p-tuplets con-
‘taining more than m consecutive 0's or 1's), Consequently the standard deviation
should be smaller than the one found above. =

Now if one assumes that the above inadmissible p~tuplets exist in the sequence
but that their frequency is 2™~ P (which in this case is a fraction of unity) the
equations of section 5 should still hold so far as the frequency of a distinct
ordered p-tuplet is concerned. (These equations should not be considered an
upper-bound} i.e. if only one p-tuplet ouf of the 2r~n {p > n} is admissible we
. may say that on the average the frequency of a distinct p-tuplet is 2=~¢ or
© 1/2P7" (p > n) so that the frequency of 2 given w is still 2°7P C2,

{

*9p-m

20
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APPENDIX A

This appendix is used to arrive at the formulation of the transition matrix .
A by treating the contents of the shift register as a state vector. The analysis
has many gaps. For more rigorous analysis the reader is referred to [1].

Definition: A maiimal pseudo-random sequence S, is a sequence generated
. by a feedback shift register connected to divide by the pr1m1twe polynomial P
(x); the period is 2" - 1. P, (x} is of the form : O .

cy e,

Py(x) = Z hixf wi th hi':o.'l and hy=h =1 . (1)

i=0
and it is the characteristic equation of the transition matrix A that gives the re-

lationship between the state (contents) of the Shift register generator at some
time t and another time t +7. If u(t) represe'nts the contents of the shift register

at time t then o o . N

ween=aun 0 g
or : |

ut +1) =A u(e) ‘__ | s )

u(t) is an n-dimensional vector and if it is considered as an n~-symbol segment
of the seqience 5, then u(t + 1) will contain n - 1 of the symbols in u{t) and a
new symbol wh;r.ch is a function of then ~ 1 pre\nous symbols as shown by the
matrix A in the companion form., :

22



— U -
u(t+1)] 10100000..[.0 0| u ()

YU

ut+1)] {00100, ...L0-0 Liug(t)

u(t+1)| looo1o0.....00

/ . . R ‘ . (33.)

u J(t+1)

u(t+1) [0000...,.000 1 []u. (D)

hohibjhy - . hy by __"’ur(.t') N
The above equation results in the following relationships’ '
Cwt+D=u, () t=1,2 ....0<1 )

alki ) "'-. N

at 1) = Z huiuct)".z hucte) @

. Since the last equation

_‘__‘-.w‘ . n'-.l ' - - )
Cu (1) = hyu (t+1) ,' - 6
N

is independent of time we can drop the time dependent thus resulting in the re-
cursive formula

23



A n=1 . N . ' .
f u, = Z h, uj. : (7
R T . . . - ) *

—— ‘. »

which gives the nth symbol of the sequence in terms of the n previous symbols.
It should be noticed that the h ;'s of equation (1) are identical to those of equa-
tion (7). » 0 _ ¢ ' '

“a
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APPENDIX B
ON THE ROOTS OF POLYNOMIALS OF A SPECIFIED PERIOD

This appendix is written in order to prove some?nterrelatiéﬁnships between
roots of polynomials. - '

1. Let

B i g
,’:,/ )
‘be a polynomial with/coefficients from GF(2). Let « be a root of the polynomial
P(x); then VAR : ‘
s } |
' P(G) =' Z hi al - 0 . - New
Now consider . o N "; S ’f-—f'
[P(ﬂ.)}z !. . | e
N . ' - N l.
-.,,[P(a)]Q:I:Z hi ai} ={
.but S ‘ L
' . -t . . 2 ’ ’ ) . . \. w. ‘ .
- . .-‘ 3 a . ‘-
2ome | = Qe ) 1) matt
n . . 1 ' - T j . ) . ] - .
. =Zhl a?l 4 0 = P(a?)
. R : i R
because T N .

'hgzhi inGF (2) and 2=0 mod 2
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"Thus e

P = P@)t=0 "

We conclude that 8 = o2 is also a root of P (x). In general if k = 2

(P(a)1* =P(a*) = 0

because . o o
/ ' .
‘ I:E hiai] = E 'hia“‘ + C‘jc (other tern’\s)-'.“'
- 4 - i :
Lt N

k! ' _
ckz —E . mod i % k.
RN 0 mod 2 for j;«‘k

. 1
In gen fal if a polynomial has a root a then o? is also a root, When A>am_g

then 2"%is faken mod 2 ™~ 1 which is the penod of the root. Example for m =5
2" -1=31. If g= =@" is a root then ,62 are also roots of-the polynomial; then
the roots are: __ _— \ _ 3

o |

all, a22' g4 mod 3k . 513 26 4 52 mod 31 _ ,2i

2 433, 426 or 21 satisfy the same polynomial of degree 5.

" thus any of al! a2, o

2. The Roots of the Reverse Polynomial.

The primitive characteristic polynomials can be found in Tables. Some of

. the tables contain only half of the primitive polynomials. The other hailf are the

ones representing the reyerse sequences and can be obtained by finding the

polynomials due to 82 141 for ea ch B. Proof: Let 8 be the root of an arbi~
trary primitive polyno




then

P(B) =p5%+p° +ﬁ“+ﬁ +1=0
Now consider the polynomisal due to the reverse sequence*

"'.'£+1

Pe(x) =x" + x"7P + x"7% 4 x

v

‘We shall test the root _ \\ :

Ly N

‘82"1__1 - ﬁﬂznulmod 2m -t

on P {x) and more generally we shall fest the root B 2* on P, M k=0,1, 2,
.....m 1becausen,l3 B2 B4 ..., Jiatds ....B“’”" are rocts of the
same polynomml (872 = ,B"2 mod 2°-1 A~1). Thus the polynomial P, is
satisfied by ﬁ' it is also satisfied by the above mentioned roots.

o—

.' .
P (B'Yy=— + 1 + 1
Ve L 23" AP ﬂf’_q

.

'+1

-

=87 (14 8P +ﬁq+ﬁ{+ﬁ"]
but the equation in the brackets is ze.ro. (P{B)). Thus

P (B =pT"P(B =0 QED

*See [ 1] for proof.



T- |
' |
Consequently 82* is a root of P (x) {
i
fork=0,1,.c4s+m~ 1. Thug the positivé 'equne_:r‘{ts of the roots that satisfy
P.(x) are R o ; 1 R -

2™ el o~ 2Kk .kA.:-D.'; 1,2 s -acis ."‘.:'.7:".7‘..'.m,-‘_--‘_-1_.’ R TERPL I BL 4 S At

The smallest power of 8 being S

2% =1 -2°"1 =271 _1 . (fork sm—-1): QED.:v: s -7
) .
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APPENDIX C |
CROSSCORRELATION GROUPS AND ROOTS OF SEQUENCES

This appendix explains the grouping of seqmanc‘es__‘sb for S, equal to one of -
the 18 sequences. The first part of Table 4 gives the sequences in Group A and
in Group B when §_ is sequence #1 (its reverse is #2) and it is rewritten for
convenience,

S, = Sequence #1 {root is )

GROUP A = Sequence #'s 3, 5, 8, 9, 11, 12, 13, 14, 16, 18.

- .

GROUP B = Sequence #'s 4, 6, 7, 10, 15, 17

Another way of identifying the sequences is by using the exponent of one of their
roots, Since each sequence has 7 roots we shall use the smallest of the 7 ex-
ponents (the first entry of the second column of Table 2). Thus the sequence
number and root identification become the pairs (sequence #, root exponent) =
(1), (2,63), (3,3), (4,31), (5,5) (6, 47), (7). (8,15), (9,9), (10,55), (11,11), (12,39),
(18,13), (14,23), (15,19), (16,27), (17,21}, (18,43).

On the root identification basis, when the root of §, is a (root erponent = 1)
Group A becomes the sequences whose roots have exponents 3 5, 15, 9, 11, 39,
i3, 23, 27, 43 and similarly Group B becomes : " _

———

B= 31, 47, 7. 59, 19. 21

~

Group C consists of the reverse sequence only with root* a®3, Notice that the
sequence whose roots is a'” = ¢® mod 127 is in group A as predicted by Gold[2]
Notice also that this is not the only sequence whose crosscorrelation with se-
quence #1 is less than or equal to 17. Nine more sequences have identical cross~
correlation values and frequencies. F

|
i

Now consider the second entry, i.e. sequeﬁce #2 with root identification 63,
Setting o®% = S the root of sequence #2 let us find 83, 85, 815, 49, g%, 839,
B13,B%3, g27and g3, Notice that the exponents of the above roots are the ex-
ponents of the «'s in case 1 for Group A. . .

RN , o
*See eridix B . ' ;
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"_'ﬁa - (a63)3'='a3_1: <-—-> sequence #‘_ 4

B3 = (a®3)5 = ab' «—> sequence # &
- T Do N tx LT, R — c ! -"'..'w‘j'
BB 2 a8 e’ sequence 7 |

| B8 . | = a%? e se_éuence # 10 has root gV’
pu | = a%8 «—> ‘sequence ¥ 12
- B  =all &« gequence #-11 -
C PR 1 D .z a5? —— seqﬁ'ence" W14
B2 ' | .;.;_aS? > seq'uehce_. ‘#‘..:'17_ :_
= asg/"(/_,. sequence | # 15

=a*? «——> sequence # 17 -

seen in Table 2,/ This result shows a possibility that the crosscorrelation Group
of values have/a dependence on the roots of the sequences. Thus if a is a root of

y
' :

\\‘ .
4,535 15,9, 11, 39, 13, 23, 27, 43

o C i, Y .
and group B consists of sequences whose roots are a.'EB with £ -'given'by S

P A T A R T I S

e
1

Coratiinn il tees g VpeS 31'--.4.'7{'.?"--55.- 19,21 T gy SRRTEATRR

v g
- B

P T N 0 T P
AP P WA S O LT R T L Fegrriita,

similarly T e e e

o]
1}

¢ =63



As we have seen if S is sequence #2 with root S (8 = a3 ) then to find group A

all we need do is ralse 8 to the powers 4 4 48 we have done, with results identical
to the ones in Table 2, part 2, Group A, Thus for Group B raise Sto 4, and
identify the corresponding sequences.

© . s
L

B3 = (a$3)31 = o*® <«——> sequence # 3
‘ ﬁ'": = (a®H4 = ot — sequence # 5 \
87 = (asa)‘T ":_- al5 «—> sequence # 8
B%5 = (a®3)55 = a3% «——> gequence #1 9
B1% = (a8 = o84 sequence # '.-.16
B2 = (8321 - o83 «—> sequence # 18
./z-‘ ‘ ) Nem

The sequences are #'s 3, 5, 8, 9, 16, and 18 and they agree with the Group B
-entry in part 2 of Table 2. (Of course Group C is sequence 1; check:

63 = (a%3)63 = 32 «—> Sequence #1).

Let us derive now the Correlation Groups for the 6th sequence. Let the
root of sequence #6 be ¥ = a*? Table C gives the information on the powers of
v, a , and corresponding sequence number for Groups A, B, and C. It can be
seen that the numbers at the third coclumn correspond to the ones for Groups A -
‘and B in Table 4 and Group C is sequence 5 as expected. The remmnmg entries
of Table 4 could be denved in this manner.

iy



TABLEC . . - .

v = a¥? «=—> sequence #6

Exponent of -y

Ex ponen.t .of Wa

""\Sequénce #

Group A

Group B

; Gro‘u'p_ C

TR

15

11
39
._13_,.
23 .
27
43

47

a9
“19 ' -

""21..:_" ! o

3(47) = 14 mod 127

5(47) = 108 mod 127

15(47) =
9(47)

70 mod 127
42 mod 127
9 mod 127

]

= b5 mod 127
‘=103 mod 127

-85 mod 127
" =126 mod 127
=116 mod 127

60 mod 127

= 50 mod 127 -
= 75 mod 127

106 mod 127
4 mod 127

= 40modi27

98 mod 127

7
16
13 .
17
9
10

32




APPENDIX D

This appendix is devoted to the development of certain sequences S of Fig.
D1 with identical crosscorrelation properties as the original two generator sSe-
quences. Before proceeding we repeat four 1mporta.nt propertles that w111 be
used in the course of the proofs. z

A Sequence of period L can be viewed as a sequence of L states (n-dimensional
vectors L = 2" - 1 for binary). @
Property 1. A maximal binary sequence w111 occupy all 2" - 1'non-zero states
before it starts repeating, |
i
Property 2. (Balance property). The number of 1‘8 in a maximal sequence
exceeds the number of 0's by 1. , i :

- .

Thus the number of zeros of a maximal sequence is equal to 2"~ 1- 1 and the
number of 1's is equal to2" "L

- ) -

Property 3. (The Shift-and-add property).

When a maximal sequence is first shifted by t bits and then added fo itself -
the resulting sequence is the same sequence delayed by some time t i.e.

| S, (0) + s,(t) =s,(t) tz0" T

\n
T

This property becomes obvious from the following argument. A shiff register
generated sequence described by equation (7) in Appendix A in a linear
process. Thus if the elements of §, (0}, u_ obey the equation

then the elements of S, (t) obey the equation
. \“ T

—

*All additions are mod 2 unless they result in some statistic R or & and their functions.
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/

WOT QRO

. e -
A .. - “

thus the elements of the sequence [S A (0)+8, {t)] are

. . n-1 n=1
v v = ) [0 vy, (©)) - Z by, O
. : i=0 i‘-"ﬂ ;

where

- v, :lui () +Aui(t)'

3

Since v obeys the same equation as u_ (the same set of hi Is) the sequence whose
element is v  is the same as S, except for a delay, if 5, is maximal. (If 5, is
non-maximal then v_ may be anotner non-—ma.mmal uequence obeying the Same
recursive equatlons)

A transformation that changes the correlation function to the difference of
the numbers of 1's and zeros in a sum sequence, Consider two sequences S, and
8p . The correlation of 8, and S, as a function of t is defined as

Lt
™ : L

i =1

defining P T : o : . PRI

B,5(t) = LR, (1) o

0pp (t) turns out to be the inner product of S, and §, (t). Thus . .

Thus : . ' ' A A I T ST ;‘:f~,—=-:;:'."\ i e

1 o ey
6pa(t) = 0 [8,(0), Sy(t)] = L a; by,
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where R <

S.\=[ax'a a .‘...], SB=[b1.'b’-'b3"...] and ai,b,.:.-l.l.

2t "3

ifa;, b, =1, 0 then one can apply the following transformation ' Y

# K

1-0 «1~1 resultingin #— e (mod2addition)

" (Another way to look at this is in terms of agreements and disagreements). The
" sunmation sign adds all agreements (1's) and subtracts the disagreements (~1's);
" now that we transformed the 1's to 0's and the -1's to 1's, we must add the zeros
and subtract the ones of the sequence resulting from the modulo 2 addition of
5,(0) and §; (t)» The reason for this transformation is the fact that very often
we are able to determine the counts of 0's and 1's of a sequence resulting from
~a mod 2 addition of two othe%aquences; ‘without going through the mechanics of
-adding bit by bit. Subsequently this count of 0's and 1's will readily enable us to
determine the correlatioffof 8, and S (t). I ° ° o

#

/ : : \: ."r i
8, =85,(0) +S(t)

then

6,p(t) = [the number of zeros inS.] - [the number of ones in §J

_ By using the above properties we shall now determine the autocorrelation function
G, 0 of maximal shift register generated sequences. Letting § 4 Pe this sequence
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O,(t) = (#of zeros'iirn Sc) = (#of ones in S¢)

S

where | - ST
S¢ = 8,(0) e 5,(1)

by using the shift-and-add property for the maximal sequence S,. .. | .

8. =8,(t") for t'#0

Furthermore using the balance property for maximal séquences ..

it . N P \ e
oo . s B P T IV P I Lr e

.[#_ of zeros in SA(tf)-]‘ - [#of 1's inlS_A(lt’“)jr;I :-1

5 —

resulting in . - o

ENOE i o t;_, 0 PR N

or
' NS
\ . . RAA (t) = -
., 20 -1 - s

for t =0 | : \\

b

- 1

= §,(0) + S,(0) =28, (0) =0~ 1 Ty

(5}
1

resulting in the all zero sequence with 2" ~1 zeros; then: - 1

e

() = [#of zero inSJ - [#of ones in§) =2"-1-0=2"-1
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™~ R0y =(2" -1)/(2" - 1) =1

. -

Suppose now that we generate sequences S, by the polynomial P(X) which is the
product of P, (x) and B, (x), the primitive polynomials of degree n which were
defined previously.

P(x) :PA(x)"PB(x} _ -
This is equivalent to taking S, (t) and S; (0) and mod 2 add them (bit by bit)

K
r

S, (0) = $,(t;) © S5(0)

~ This ecan be accomplished by the configuration of Figure 1.

S, 00}
Shift Register A A (.\'
' 5g (0)
Shift Register B
Figure D1

It will now be shown thatthe auto and crosscorrelation of the sequences §,
generated by the technique of Figure 1 takes on the same values as the cross-
correlation of S, and S . The crosscorrelation of two sequences 5, and Sj
(i#j)is

xS

6:,(t) = 15,(0) #5,()] = hof 0’5 in, - #0f I's inS,

a7



where

8 =5,(0) e S;(t). ...

Substituting for S; and Sj

oo . N .
v - DS TN ot g

5,(0) = SA(ti,) e Sy (0).
p . 5,(t) = Sy(t; + 1) e S()

8, (0) = Sa(t)) © S, (t, ‘) Tsﬂ(o') 0 Sy(t)

&

=8, (£)) o §;(£,).

!

.

Now going backwards’ the numbers of zeros and ones in S ig é_cjﬁal' to the

nuszeros and ones in S ({ )+ S ({’,2) thus

—

[#0°s in S, (0)] ~ {Hof I's in 5, (0y) = 818,(4,). Sy(f,)3

g

or . elj(t)=9m({l"{'2)‘ e e

thus the crosscorrelation of S and S, is equal to the crosscorrelation of S,
and S, at some other time delays. Let us now examine the upper bound of the
autocorrelatlon of §,.

6,,(t) =018,(0), §,(t)] = [Hof 0's in$;;] = [#of 1's inS3] and t 7 0

¢
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where S . =8 (0)+S_(t ‘By making the proper substitution

[ Su(t)F Sp(0) @ §,(t; + t) @Sy (t)
=8, () + 5, (t; + ©) e_'SB(O)‘fSB(t) Stz0

=5, ¢+ s
Bii<t):953({'3"{’2) _ o ' .

Yielding the same results as before. Thus both autocorrelation and ¢ross- i
correlation of the sequences 3, generated by the products of the primitive poly~
nomials P, (X} and B, (X) are equal to some crosscorrelations of S, and §,.

For the case where S, the interfering sequence, is really a linear sum of
other sequences, (but notS. the primary sequence), the crosscorrelation then
still has the same values as the erosscorrelation of S, and 8y, This will be
shown in the sequel ; ‘

.

let , ‘ HSE“: ; Sg (tg) modzi
. ¥i .

The sum sequence 5, becomes

: -

SK:S:Q Z S'ﬁ(t’f')I mod2
\- ati'l Ei

but S S, =S5(0) oS, (t‘!)
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and each S{(tﬂﬁ) is the sum of some SB (t’ﬂx ) and SA (t'ﬂz‘} thus

FAR
O () L () e

Now by using the shift and add property ' E S

| Sy =S,(the 55(0) + Z [SB (t,g) ® SA‘(I:{:)] mg'd 2

N

R ZSA (t,) =Sacty :
. | " ’E' J,;:' . » - |
| Co .'.u_-;*':-' f[' Z Sy (tfﬂl) = SB (t4)A ;
and 4 S

- SK_ = S, (t) o SB (t4) : QED.

o T AN
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APPENDIX E

Lo Loty

1f
pl
A
[N ]
£
£ g
R
-+
£
————
£ D
e

;»' weQ w=p/2,

replace w in the second term by p - k; then the second term becomes

(A-1)

T (A-2)

o | ‘ | pf2 '
SR
: (e _‘) p-k/ . (® {)- k) -
K=p/2- » s T k=oe p .
since : e o “
| '(p s Py . __p! | o
, ' k) (P-k) k! (p-ky! . . C
Consequently? ‘becomes L S __
. . ) N ! N
p/2 o p/2 ‘
- p p ine -
= Z w ) ¢ (p-k)( ) replacing 'k by w-
W/ k .
»=0 ~ k=0 ‘
A
pr2 p/2 | .
- p _ P) - ' -
Zw(w)+z (p-w) (w : - i
w=o w=0
p/2 p/2
= 1 {p = = ‘ p
e @-m) (=0 ) (7)
wEQD - T X
Now :
p . ) I |
A P\ yw.qp~w _ ° . 9P
Zo@ Z‘(w/‘ R CR R
we wa g ’

t
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since (p/w) is symmetrical about w = p/2
. R .

\ubstituting the above result iﬁ-Aequation‘ A-1.

7 ’7”(:)=p

vBO .
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APPENDIX F

e,

To find ST T

E i?(‘_’); letting i2=i(i~1)+i
1 ’ .

the above expression is equal to

L

Zp:: ii- 1)(‘:) +Z i (f) .* -

K

since the first two terms are 0, (for i = 0, 1)

P I' ,',
i .
i

- Z ii-n(f) + 2L

ie2

P . p!
2P 4 Z i(i -1y mi'.(p—i)'.

flOI'U

-

o
o (p-2)!
29+p(p-1)z G- (p-1)!
im 2 :

N
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P p-1

A 12 p___g - (p—?)‘
RN ERLEE z

/ kaC

/ R

* also from A;y/E
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